
Noname manuscript No.
(will be inserted by the editor)

ESSMArT Way to Manage customer requests

Maleknaz Nayebi · Liam Dicke · Ron
Ittyipe · Chris Carlson · Guenther Ruhe

Received: date / Accepted: date

Abstract Quality and market acceptance of software products is strongly influenced
by responsiveness to customer requests. Once a customer request is received, a deci-
sion must be made whether to escalate it to the development team. Once escalated,
the ticket must be formulated as a development task and assigned to a developer. To
make the process more efficient and reduce the time between receiving and escalating
the customer request, we aim to automate the complete customer request manage-
ment process. We propose a holistic method called ESSMArT. The method performs
text summarization, predicts ticket escalation, creates the ticket’s title and content,
and ultimately assigns the ticket to an available developer. We began evaluating the
method through an internal assessment of 4,114 customer tickets from Brightsquid’s
secure health care communication platform - Secure-Mail. Next, we conducted an ex-
ternal evaluation of the usefulness of the approach and concluded that: i) supervised
learning based on context specific data performs best for extractive summarization; ii)
Random Forest trained on a combination of conversation and extractive summarization
works best for predicting escalation of tickets, with the highest precision (of 0.9) and
recall (of 0.55). Through external evaluation, we furthermore found that ESSMArT
provides suggestions that are 71% aligned with human ones. Applying the prototype
implementation to 315 customer requests resulted in an average time reduction of 9.2

Maleknaz Nayebi
Ecole Polytechnique of Montreal
E-mail: mnayebi@polymtl.ca

Liam Dicke
University of Alberta
E-mail: dicke@ualberta.ca

Ron Ittyipe
University of Calgary
E-mail: ron.ittyipe@ucalgary.ca

Chris Carlson
Brightsquid Inc.
E-mail: chris.carlson@Brightsquid.com

Guenther Ruhe
University of Calgary - SEDS lab
E-mail: ruhe@ucalgary.ca

2 Maleknaz Nayebi et al.

minutes per request. ESSMArT helps to make ticket management faster and with re-
duced effort for human experts. We conclude that ESSMArT not only expedites ticket
management, but furthermore reduces human effort. ESSMArT can help Brightsquid
to (i) minimize the impact of staff turnover and (ii) shorten the cycle from an issue
being reported to a developer being assigned to fix it.

Keywords Automation · customer request management · Text summarization ·
Ticket escalation · Ticket assignment · Mining software repositories · Case study
evaluation

1 Introduction

Software evolution is driven by customers’ (also known as the end users) needs, typically
in the form of feature or maintenance requests. Management of change requests is
time consuming and requires significant training and domain experience. Data-driven
automation of this process is proposed to increase responsiveness and improve the
quality of this data-driven requirements, and change management process [29].

Automated text summarization is the task of producing a concise and fluent sum-
mary while preserving key information, content, and overall meaning [1]. A recent
survey on the different concepts and techniques was given by Gambhir and Gupta [16].
While initially developed and used outside software engineering, text summarization
becomes critical for handling the textual information that is now widely accessible in
software development. Automated summarization of bug reports has been studied e.g.
by Rastkar et al. [49]. However, summarization is just the first step in a more com-
prehensive process of leveraging textual responses for software product improvement.
To increase its practical impact, we increase the scope of automation and propose
ESSMArT as a method for automating text summarization, escalation of customer
requests to the development team, as well as suggesting assignment and priority of the
automated ticket report.

In this paper, we target the automated escalation, creation, prioritization, and job
assignment of customer requests. To do so, we introduce a method called ESSMArT1.
ESSMArT combines summarization with information retrieval techniques for auto-
mated generation of escalated tickets based on customer requests. As a case study, we
evaluated ESSMArT using data from the development of a Health Communication sys-
tem offered by a company called Brightsquid. Analyzing customer change requests is an
important part of their development process [41]. Through analysis of 4,114 customer
requests, we answered the following research questions:

RQ1: Automated condensing of customer requests – Among existing state-of-
the art techniques for condensing customer requests by extractive summarization,
which one works best in terms of F1 accuracy?

Why and How: Typically, once a change request arrives, a Customer Relationship
Management (CRM) employee takes over the request and summarizes the request for
the customer’s confirmation. The summary generated is the base for the escalation
decision and possibly for creating a development ticket. Automation of this step is
intended to reduce the human workload and increase responsiveness using the state
of the art ROUGE metric for evaluation.

1ESSMArT: EScalation and SuMmarization AuTomation

ESSMArT Way to Manage customer requests 3

RQ2: Predicting escalation of customer requests – Comparing three classifica-
tion algorithms - Naive Bayes, Support Vector Machines, and Random Forest -, which
one works best for predicting the escalation of customer requests?

Why and How: Support for Customer Relationship Management (CRM) staff in
predicting escalation is expected to help in terms of (i) effort needed and (ii) quality
of prediction. We evaluated quality of prediction by comparing algorithm results with
those of three machine learners with proven success in similar contexts.

RQ3: Quality of automatically generated ticket content – How well are the ES-
SMArT generated ticket titles and contents aligned with those generated by human
experts?

Why and How: Often, only the CRM manager creates and escalates development
tickets. These tickets are more general than the summarized conversation, and are
represented by a title and body that describes the problem or requested enhancement.
ESSMArT uses abstractive summarization to create the ticket title, and a thesaurus
to generate development tickets from the summary of tickets studied in RQ1.

RQ4: Quality of operationalization – In comparison to the results of a human ex-
pert, how correct are (i) the predicted priorities of the tickets and (ii) the assignments
of the tickets generated by ESSMArT to developers?

Why and How: The priority of a ticket determines how urgently it should be han-
dled. When correctly prioritized, tickets are handled in the correct order. The proper
assignment of the ticket to an available developer familiar with the ticket’s domain
is critical to implementing the change request. This is currently a manual process
constrained by developer expertise. We benchmarked with three states of the art
classifiers to automate this process by searching for the analogy of the upcoming
ticket with some former tickets.

RQ5: Usefulness of ESSMArT for experts – Utilizing a prototype implementa-
tion of ESSMArT, how much are the generated results aligned with the perception
of the human experts and how useful are the results?

Why and How: External evaluation looks into the perceived value of ESSMArT
from leveraging a prototype implementation. A set of 315 actual customer requests
were executed by 21 CRM experts and 33 project managers. We measured execution
time and surveyed the perceived usefulness of the tool.

The paper is subdivided into nine sections. In Section 2, we begin by providing more
details on the context and motivation for this research. Related work is then analyzed in
Section 3. This is followed by an outline of the ESSMArT method in Section 4. Results
for different types of (internal) validation of the method are presented in Section 5.
Results from external validation follow in Section 6. We provide a discussion on some
of the assumptions of the paper and present them in Section 7, followed in Section 8
by a discussion of the limitations and threats to validity of the research. We conclude
and give an outlook to future research in Section 9.

4 Maleknaz Nayebi et al.

2 Context and Motivation: Customer Request Management at Brightsquid

Brightsquid Secure Communication Corp2 is a global provider of HIPAA-compliant3

communication solutions - providing compliant messaging and large file transfer for
medical and dental professionals since 2009. Secure-Mail is Brightsquid’s core com-
munication and collaboration platform offering role-based API access to a catalog of
services and automated workflow. It supports aggregating, generating, and sharing pro-
tected health information across communities of health care patients, practitioners, and
organizations. Brightsquid has been working on a number of projects in this domain,
and this study is focused on analyzing four of these systems. The company is facing the
typical problem of software start-ups: the need to quickly enter a competitive market
with innovative product ideas while generating short-term revenue by satisfying cur-
rent customers and their expectations. At the same time, the company is facing the
demand of growing their customer base [22].

Receive
a request

Confirm
the request

Escalate
the request

Prioritize
& assign

the request Time

Escalation time

CRM team CRM Manager Project manager

Fig. 1 Change request management process at Brightsquid

The Brightsquid process of managing change requests is shown in Figure 1. A
comparison of the traditional (baseline) process with the one recommended by the
proposed ESSMArT method is illustrated in Appendix I. When a new customer request
arrives, a member of CRM staff decides whether the request should be transitioned
into a development ticket. If yes, the CRM manager escalates the customer request by
summarizing the customer request, translating it into technical language, and opening
a new ticket for the software development team. Then, the project manager defines
the issue type and adds the ticket to the backlog of customer requests - a set of Jira
tickets tagged as “CRM escalated". In each bi-weekly sprint at Brightsquid, the project
manager scans through the escalated tickets, discusses the technical aspects of the
ticket, and decides whether or not to assign the ticket to a member of the development
team. If the ticket is not assigned, the request is maintained in the backlog of tasks to
be solved at a later date.

Between November, 2014 and June, 2017, Brightsquid recorded 4,114 customer
requests. 7.8% of these requests were escalated to the development team. These change
requests constituted 10.7% of the whole backlog (including 3,026 tickets overall) over
these 32 months. After mining the time stamp data of the ticket system, we identified
ticket escalation by the CRM manager as the process bottleneck. The duration of time
taken by the CRM manager to make an escalation decision (escalation time) is on
average 26.6% of the total time from receiving to assigning the ticket. Moreover, the
escalation process requires both CRM and project manager involvement [44].

2https://Brightsquid.com/
3HIPPA: Health Insurance Portability and Accountability Act of 1996

https://Brightsquid.com/

ESSMArT Way to Manage customer requests 5

3 Related Work

Motivated by the problem at Brightsquid, we propose ESSMArT for managing cus-
tomer requests. The scope of this investigation starts at the time the customer request
arrives, escalating the request as well as finally assigning it to a developer. To the best
of our knowledge, this is the first study that analyses both the full process, as well
as associated data repositories. Former studies have focused exclusively on predicting
ticket escalation, or only on summarizing bug reports. Below, we provide an overview
of the existing works.

3.1 Escalating customer requests

Bruckhaus et al. [8] performed one of the inaugural studies in ticket escalation, pro-
viding an early model to predict ticket escalation risk in Sun Microsystems. The study
intended to reduce development process risk and cost by excluding previously- reported
system defects. As the follow up of this study, the authors took a business-oriented
perspective in [28] and created a system to predict escalations of known defects in
enterprise software to maximize the return on investment (ROI). They limited their
study to defect escalation with the intent of preventing risky and costly escalations.
The study used a decision tree classifier to find the most cost-effective method, which
had a significantly higher ROI than any other method. Also focused on the cost of
escalating defects, Sheng et al. [53] used a cost-sensitive decision tree algorithm to
obtain the lowest possible cost in dealing with defects. This paper, similarly to the
previous one includes negatives in the cost matrix to account for the benefits of correct
classifications.

More recently, Montgomery and Damian [37] performed a study at IBM Canada to
analyze ticket escalation. Montgomery et al. [38] suggested the tool ECrits to mitigate
information overload when making customer request escalation decisions. These two
IBM-focused studies define escalation as the process where customers request man-
agement escalation of their support ticket, which consequently triggers immediate in-
volvement of a senior software engineer. This differs from our study, where escalation is
triggered when CRM experts are unable to directly solve customers’ reported problems.
Montgomery and Damian [37] focused on determining attributes that most accurately
predict ticket escalation. Their approach included diverse data points, including de-
tailed customer profiles to predict ticket escalation likelihood, as well as customers’
response time expectations compared to analysts’ average response time. Using a set
of 2.5 million support tickets, they were able to achieve a recall of 0.79. In order to
make accurate predictions at scale, their model focused on selective rather than com-
prehensive usage of available data.

Managing customer requests for mobile applications was the content of a survey
performed by Martin et al. [33]. However, the notion of escalation was not included as
these studies focused instead on analyzing and prioritizing customer requests.

3.2 Text summarization

Automated text summarization methods are usually discussed under two general cat-
egories of extractive, and abstractive text summarization. For a recent survey of these
two categories, see the work of Das and Marins [11].

6 Maleknaz Nayebi et al.

3.2.1 Extractive text summarization

Extractive text summarization refers to a method of taking a pre-existing document
and extracting the sentences that best make up the content of the document. These
sentences are taken word for word from the original document. This process is guided by
a variety of factors such as the frequency of the words in the sentence, or the similarity
of the sentence to the title of the article [17].

Extractive summarization has three major steps. First, an intermediate represen-
tation of the text is constructed. Second, the sentences are scored based on their cal-
culated importance. In the third step, the sentence score is used to rank sentences,
and those with the highest rank are selected to be part of the extractive summary. Ex-
tractive summarization techniques use multiple features and different feature weights
for selecting the most representative sentences for the summary. An overview of the
extractive summarization process and methods are illustrated in Figure 2. Extrac-
tive summarization methods are different in terms of constructing the intermediate
representation. Two major representation techniques exist: topic representation and
indicator representation.

Nazar et al. [45] provide an overview of the literature of software artifacts. Ex-
tractive methods of summarization are most commonly applied in software engineer-
ing. Abstractive summarization, on the other hand, is most often applied to large
documents, such as news reports [7], to facilitate concise reading of the entire docu-
ment. Researchers have been benchmarking and adopting summarization techniques
to improve the accuracy of summarizing software artifacts. In Table 1, we provide an
overview of those papers most closely related to ours, including application domains,
summarization techniques utilized, and size of datasets. While extractive methods are
typically applied in software engineering studies (Table 2), a majority of them are ei-
ther a subset of the general body of text summarization (e.g., Rastkar et al. [49]) or
are designed independently and for a specific task (e.g., code summarization).

For the design of ESSMArT, we adopted methods from the existing body of knowl-
edge which were classified by systematic literature reviews [1], [7] as belonging to one
of the established categories of text summarization.

Construct intermediate
representation Score sentences

Select sentences
for the summary

Indicator
representation

Topic
representation

2 1

Frequency-driven approach

Topic word approach
Latent semantic analysis

Bayesian topic models

Graph method

Machine learning

Fig. 2 Overview of extractive summarization methods inferred from [1]. Summarization meth-
ods mainly differ in the way they construct the intermediate representation.

ESSMArT Way to Manage customer requests 7

3.2.2 Abstractive text summarization

Abstractive text summarization refers to the summarization of text passages and doc-
uments, utilizing one of many corpus-backed NLP methods. The ultimate goal of this
summarization is to synthesize sentences based on sentence generation, which is done af-
ter clustering, importance determination, and other information extraction techniques
or ranking methods running on top of an underlying language model. Abstractive NLP
summarization techniques most commonly utilize a large corpus and subsequently gen-
erated language model, which enables abstractive methods to perform information ex-
traction and ranking [54].

3.3 Ticket prioritization and assignment to developers

Prioritization and assignment of tickets are well established problems in software en-
gineering [23], [3]. An assistant for creating bug report assignment recommendations
was proposed by Anvik [2] who demonstrated that sufficiently reliable bug recommen-
dations can be offered even with limited project knowledge. A new framework for bug
triaging was proposed by Xia et al. [61] using a specialized topic modeling algorithm
named multi-feature topic model (MTM) which extends Latent Dirichlet Allocation
(LDA) for bug triaging. Another recent method is provided by Bandera et al. [5]. Their
patented approach is “based on identifying and scoring quantitative metrics, qualitative
indicators, and customer tones contained in the content of respective problem tickets
and determining an action step for each respective problem ticket".

Automated assignment of developers to tickets is a stand-alone research topic which
has been studied by various authors. More recently, Jonsson et al. [21] studied the
usage of the ensemble-based machine learner called Stacked Generalization (SG) by
adopting the methods introduced by Wolpert et al. [60] which combines several learner
types (such as Naive Bayes, Support Vector Machine, KNN). The authors prove SG’s
applicability in large scale industrial contexts, and moreover, provided a comprehensive
analysis of related work in automated bug assignment [21].

With ESSMArT, our intent was not to perform a comparative analysis to discover
the most effective automated bug triaging assignment methods or techniques. Instead,
we analyzed a dataset of prioritized and assigned bug tickets against three often-used
machine learning techniques known to the decision makers. While investigating learner-
impact on the complete triaging process, we demonstrated that applying individual
learner components provides “good enough" real-world results.

Table 1 Related software engineering research that used extractive summarization.

Application
domain Paper Summarization

technique Dataset

Bug reports Rastkar et al.
[48] [49] Machine learning 36 Mozilla Bug re-

port
Bug reports Mani et al. [31] Graph method 55 DB2 bug reports
App reviews Di Sorbo et al. [12] Topic classification 17 mobile apps
Release notes Moreno et al. [39] Pre-defined heuristic 1,000 release notes

8 Maleknaz Nayebi et al.

4 ESSMArT for Automated customer request Management

The design of the method was inspired by real-world projects at Brightsquid. ESSMArT
consists of five main steps as shown in Figure 3. While some of these steps (e.g.,
summarization, escalation) were adapted from existing work, the main value of our
method is that it provides a holistic approach covering the complete process starting
from the arrival of a change request through to issuing a ticket and assigning it to
a developer. As part of the method development, we studied and compared different
variants of implementing these steps, described in the following subsections.

4.1 Condense customer requests

When a customer request is received, the CRM staff member summarizes the incoming
request and then has the customer validate whether the summarization correctly re-
flects their request. Thus, Step 1 of ESSMArT starts with automated summarization
of the customer request.

Condense

user request

Predict
escalation

Create
the title
of ticket

Create
content
of ticket

Prioritize
and assign

ticket

Extractive
text sum-
marization

Classification

Abstractive
text sum-

mazrization

Thesaurus

Classification

User
request

Summary
of user
request

Escalated
request

Not-
escalated
request

Develop-
ment
ticket

Develop-
ment
ticket

User

CRM expert

Project manager

Developer

1

2

3

4

5

RQ1

RQ2

RQ3

RQ3

RQ4

Roles Artifacts ESSMArT Techniques

Fig. 3 Process of ESSMArT for automated generation of developer tickets from customer
requests

ESSMArT Way to Manage customer requests 9

We used open source python libraries “Summy"4, “Summa NLP"5, and “Pyrouge"6

to implement summarization techniques for ESSMArT.
By analyzing the 4,114 customer requests, we found that they were initially sub-

mitted to the CRM and included on average 9.3 (median = 8.8) sentences. Similarly,
the summaries created by the CRM staff included on average 4.7 sentences (median
= 4.1). Furthermore, we compared the length of tickets generated by eight different
CRM staff members and could not find any significant length difference after running
an ANOVA test (p−value = 0.31). This means that the ticket length is about half the
length of the original conversation, and is independent of the CRM team member who
receives and responds to the customer request. To condense the conversation in the
form of a customer ticket we used extractive summarization, limiting the number of
sentences for our extractive summarization to five sentences. Summaries created by the
CRM staff were used as the benchmark for measuring performance of our automated
methods.

To select the best summarization techniques in Step 1 of ESSMArT, we compared
various extractive summarization methods. The methods were selected based on their
popularity in literature, in particular in software engineering research. In addition,
we looked at the availability of the summarization methods as open source tools or
libraries. For the frequency driven approach we used the SumBasic algorithm suggested
by Vanderwende et al. [56]. On the topic word approach, we applied the Edmundson
method [14]. For Latent Semantic Analysis (LSA) we applied the Steinberger and Jezek
method [55]. For Bayesian topic modeling, we used Textrank suggested by Mihalcea
and Tarau [35]. Table 1 provides a summary and a pointer to related literature.

Also similar to Rastkar et al. [49], we used machine learning to build an indicator
representation. We built classifiers using Naive Bayes [50] as it proved to outperform
other classifiers for summarization tasks [1]. We trained the classifier only on the con-
tent of the tickets and based on the follwoing three datasets: (i) The Enron dataset
of emails, as it includes the conversation between human subjects [9], [40]. One of the
authors annotated the summary of this dataset, (ii) the conversation between develop-
ers and users of Ubuntu on Fedora channel (denoted as UDC) with similar nature as
the conversations at Brightsquid. One of the authors annotated the summary of this
dataset; and (iii) the conversations between CRM team and Brightsquid customers
(denoted as BSC). Two of the authors annotated these summaries.

To guide among the existing summarization techniques, we performed a pair-wise
comparison of the extractive summarization methods. Second, we compared the re-
sults of automated extractive summarization with the summaries created by human
experts. For this purpose, we used Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) [27]. ROUGE is the most widely used method for evaluation of summariza-
tion quality. While ROUGE has different variations, we followed [1] and used ROUGE-n
and ROUGE-SU.

ROUGE-n is based on the comparison of n-grams. Within each comparison, one
of the summaries is considered as the reference and the other summary, also known
as the candidate, is compared against it. Within this comparison process, ROUGE-n
elicits bi-grams and tri-grams:

4https://github.com/miso-belica/sumy
5https://github.com/summanlp
6https://github.com/andersjo/pyrouge

https://github.com/miso-belica/sumy
https://github.com/summanlp
https://github.com/andersjo/pyrouge

10 Maleknaz Nayebi et al.

Table 2 Extractive summarization techniques analyzed for Step 1 of ESSMArT.

ID Class Type Description

SumBasic Topic repre-
sentation.

Frequency
driven

Proposed by Vanderwende et al. [56] used in
[20], [58]. The method considers frequency
of words in the cluster of input documents
as summary sentence selection criteria.

Edmundson Topic
representation

Topic
driven

The method uses word phrase frequency,
position in a document, and key phrases as
the summary sentence selection criteria.

Steinberger Topic
representation

Latent
semantic

Uses word co-locations to determine the
word’s context and similarity of word mean-
ings to cluster sentences and extract the-
matic information.

LDA Topic
representation

Bayesian
models

Uses measure of divergence between sen-
tences (also known as KL measure) to rank
and select sentences.

TextRank Indicator
representation

Graph
method

Represent document as a graph where
nodes represent sentences and edges
demonstrate the degree of similarity be-
tween them. Sentences in the center of the
graph are included in the summary.

Enron Indicator
representation

Machine
learning

Trained a Naive Bayes classifier on the
Enron email dataset. Enron contains data
from 150 users and a total of about 0.5MB
messages. The data was made public by
the Federal Energy Regulatory Commission
during its investigation7.

UDC Indicator
representation

Machine
learning

Trained a Naive Bayes classifer on the
Ubuntu-related conversations on the Freen-
ode IRC network8. Internet Relay Chat
(IRC) is a form of real-time Internet
chat designed for group (many-to-many)
communication in discussion forums called
channels. We used 5GB of chats between
2004 to 2017.

BSC Indicator
representation

Machine
learning

Trained a Naive Bayes classifer on the
Brightsquid CRM conversation with cus-
tomers logged between 2014 and 2017.

ROUGE − n =
p

q
(1)

Where p represents the number of common n-grams between the two candidate
summaries and q represents the number of n-grams that were extracted from reference
summary only. ROUGE-SU elicits both bi-grams and uni-grams and allows the inser-
tion of words in bi-grams. In other words, the bi-grams do not need to be consecutive
sequences of words.

4.2 Predict escalation

In Step 2 of ESSMArT, we predict whether a ticket should be escalated or not (See
Figure 3). To this end, we trained and compared the performance of three classifiers:
Support Vector Machine [18], Naive Bayes [50], and Random Forest [26]. Each of these

ESSMArT Way to Manage customer requests 11

Table 3 Attributes associated with customers’ request

ID Name Description
Att1 Conversation Information provided in the ticket’s conversation
Att2 Requester The individual who requested the ticket originally
Att3 Ticket type What type of request was made
Att4 Tags What tags are present in the ticket
Att5 Via What medium the ticket was introduced through
Att6 Severity The extent to which the ticket affects the product
Att7 Assignee Who was assigned to handle the ticket
Att8 Time open How long it has been since opening a ticket
Att9 Time escalated How long it has been since escalating the ticket
Att10 Time to assign How long the ticket takes to be assigned
Att11 Subject Content contained within the subject
Att12 Brand name Which product the ticket relates to
Att13 Organization Which organization is requesting the ticket

techniques have been previously applied to solve software engineering problems, in-
cluding fault prediction [30] or predicting software outcomes [10]. Our intent was not
to rank the methods in general, but rather to find one that works best with the data
set available. We found that Random Forest, one of the ensemble learning techniques
which has been very successful in handling small-sized and imbalanced datasets [15],
works well with a mixture of numerical and categorical attributes.

For training the classifiers, we used Scikit’s package of Python. When applica-
ble, we applied an exhaustive grid search over classifier parameters (such as Kernel,
Gamma, and C values) in a way to maximize the score of the data omitted. GridSearchCV
exhaustively considers all parameter combinations and optimizes parameters by cross-
validated evaluation. We used the GridSearchCV function of Scikit and leveraged both
the textual content of the requests as well as the non-textual content:

(i) Using textual content of inquiries: We trained and compared classifiers using the
term frequency-inverse document frequency (TF-IDF) values of the words that make
up the tickets. TF-IDF is a statistical measure frequently used in information retrieval
and text mining to evaluate the importance of words in a collection of documents [47].
It consists of two components: Term Frequency (TF), which is a count of the number of
times a word appears in a document, normalized by the total number of words in that
document. The second component is the Inverse Document Frequency (IDF), which
is the logarithm of the number of documents in the corpus divided by the number of
documents where the particular term appears.

We compared classifiers based on different text attributes. We compared the TF-
IDF with (i) Bag-of-Words (BoW) [57] as a representation of the conversations, (ii)
the extractive summaries, and (iii) a combination of the two. All three options were
studied using both lemmatized and non-lemmatized tickets. Bag-of-Words is a simple
approach for representing textual information. It is used to describe the occurrence of
words within a document. All classifiers were run using the TF-IDF of the conversation
and the extractive summaries.

(ii) Using non-textual attributes for prediction: We elaborated on the textual con-
tent of the customers’ inquiries by using other attributes recorded alongside it in pre-
dicting the escalation and priority of tickets. To evaluate if using any of the recorded
data, such as requester, organization, and the time stamp (see the full list in Table
3), could increase the accuracy of the classifiers, we used the Minimum Redundancy

12 Maleknaz Nayebi et al.

Maximum Relevance (mRMR) algorithm [46]. mRMR is an algorithm to select features for
classifiers mRMR is an algorithm to select features for classifiers in a way that the
selected features have strong correlation with the classification variable (maximum rel-
evance), but being mutually far away from each other (minimum redundancy). This
scheme has been found to be more powerful than the simple maximum relevance se-
lection [4]. We used an R software environment implementation of mRMR algorithm
for this purpose. mRMR is superior to methods such as information gain analysis [63] as
mRMR9 considers the relation between the attributes as well.

4.3 Create a ticket title and content

Each development ticket consists of a title and a body that describes the problem.
In Step 3 of ESSMArT, we used abstractive summarization to suggest ticket titles.
The knowledge bases used for abstractive NLP summarization techniques most com-
monly utilize a large corpus and subsequently generated language model that allows
for abstractive methods to perform information extraction and ranking.

We implemented the abstractive summarization using AbTextSumm [6]. This method
was designed and initially implemented by Banerjee et. al [6]. The abstractive summa-
rization proposed by Banerjee et al. [6] includes four main steps (i) identifying most
important sentences (ii) clustering words (ii) generating k-shortest paths in each clus-
ter using word graph, and (iv) optimized selection of words maximizing information
content and readability of the summary. Abstractive text summarization is a growing
field of research and its state of the art body of knowledge includes variety of tech-
niques [62]. We used the method suggested by Banerjee et al. [6] as it had superior
performance in comparison to the other methods, in addition to an open source library
(in Python) provided by the authors, which we used in developing ESSMArT.

In Step 4 of ESSMArT, we built a thesaurus to map customer language into terms
understandable by the developers. In a request, customers report their experience on
using the software. However, a development ticket reflects the high level story in a way
that is more understandable for the development team (for example to reproduce bugs).
When a customer communicates with a CRM team, only the name and surname of the
customer needs to be specified and the CRM team member will refer to their customer
database to get related information such as the role of the customer, organization,
and brand name10. When creating the development ticket the content should be self
explanatory. To make this happen we take the summary of the conversation that we
created in Step 1 of ESSMArT and:

(i) Specify brand name: The development ticket should explicitly mention which prod-
uct the ticket relates to. As a result, each ticket starts with “in the XYZ systems"
within which, XYZ is the name of the system. This system is the systems that have
been granted access into once deploying the product.

(ii) Specify the role of the requester: The development ticket should specify the role or
the requester to reflect the story. We found this by mining the satellite data around

9Comparing mRMR with Principle Component Analysis (PCA) [59] and Independent Com-
ponent Analysis (ICA) [19], mRMR does not need the mapping of features into the orthogonal
and independent space.

10We focused on the four products of Brightsquid among all the developed systems by them

ESSMArT Way to Manage customer requests 13

John emailed me and wanted a copy of a message note faxed to him.

a doctor a doctorIn the EMR system;In the EMR system;

specifying system

In the EMR system; a doctor emailed a doctor and wanted a copy of a message note faxed to him.

Original Sentence

Transformation
Steps

Transformed Sentence

Fig. 4 An example of transforming a sentence from customer request to a development ticket
using ESSMArT.

each customer. For example, if “Jane" is calling from “Crowfoot clinic" we find in the
organization chart that she is the "administrator".

(iii) Abstract specific names to general entities: The specific names should be replaced
and mapped to a known general entity (instead of “John Doe", it should be “patient").
In the case that we fail to map a specific name into a general entity, we eliminate it
from the sentence.

Figure 4 shows this transition for a sample sentence. To make these mappings we
built a thesaurus based on the Brightsquid data. To build this thesaurus we specified
a set of documents that contain the related information about our entities. We used
the user stories and release notes from Brightsquid as well as descriptions of the or-
ganizations using Brightsquid products. We used word co-occurrence and grammatical
dependencies [52] using the Stanford NLP toolkit [32]. Then we detected the specific
names within the summaries using rule-based Named-Entity Recognition (NER) [36].
Rule-based NER uses a set of named entity extraction rules for different types of named
entity classes with an engine that applies the rules and the lexicons to the text [36].

4.4 Prioritize and assign tickets

Once the ticket is created, each is assigned a priority in the backlog of the project, the
options being Blocker, Critical, Major, Minor, or Trivial. Then, a developer is assigned
to the ticket to solve and close it. In Step 5 of ESSMArT, for both assignment and
prioritization of the ticket, we reasoned by analogy. We built and compared the usage of
three state of the art classifiers (Naive Bayes, SVM, and Random Forest) to predict the
priority of the ticket and subsequent assignment to a developer. To find the analogy
between the ticket and formerly assigned and prioritized tickets, we used the mRMR
measure to select attributes among the list of Table 3 to train the classifiers. The
details have been discussed in the method for Step 2 (See Section 4.2).

5 Internal evaluation

The proposed method has been evaluated at the different steps and from two different
perspectives (i.e., internal and external perspective). An overview of all evaluation
done is given in Figure 5. In this section, we discuss the different aspects of internal
evaluation of ESSMArT. The analysis refers to RQ1, RQ2, RQ3, and RQ4. By its
nature, this all is a retrospective analysis based on Brightsquid data.

Customer requests were received by email, phone, or textual chatting and are stored
in the Zendesk repository of Brightsquid. Looking over the 4,111 tickets in this study,
each customer request has an average length of 152 words. This body of text has the

14 Maleknaz Nayebi et al.

ESSMArT Condense

user request
Predict

escalation

Create
content
of ticket

Create
the title
of ticket

Prioritize
and assign

ticket
1 2 3 4 5

Internal
Evaluation

Comparing ESSMArT

and BrightSquid

summaries of 4,114

requests using ROUGE

Cross
validation of
4,114 user
requests

Comparing
315 tickets

using
ROUGE

Comparing
315 titles
using

ROUGE

Cross
validation
of 315
tickets

External
Evaluation

Comparing content and
needed time for 315
summaries generated
by 21 CRM experts

Comparing content and
track time needed for
315 tickets generated

by 33 project managers

Fig. 5 Evaluation of ESSMArT

vocabulary size of 3,276 words. 7.8% of all customer requests were escalated, summa-
rized, and stored in a Jira repository. The development tickets have an average length
of 87 words and a more focused vocabulary size of 2,021 words. For internal evaluation
of ticket escalation, we applied 10-fold cross-validation and provided the average results
of running it ten times.

5.1 RQ1: Summarization of customer requests

To condense the conversation in the form of a customer ticket we used extractive sum-
marization. We applied and compared the results of eight summarization techniques,
which covered different extractive summarization classes based on unsupervised (topic
representation, indicator representation) and supervised learning (see Table 2). For su-
pervised learning, we trained a Naive Bayes classifier on three different datasets: Email
communications, Dialogues between developers and users of Ubuntu, and Brightsquid’s

Table 4 F1-score of extractive techniques for summarizing customer requests.

ROUGE ROUGE-SU

Method

S
u
m

B
as

ic

E
d
m

on
d
so

n

S
te

in
b
er

ge
r

L
D

A

T
ex

tR
an

k

E
n
ro

n

U
D

C

B
S
C

S
u
m

B
as

ic

E
d
m

on
d
so

n

S
te

in
b
er

ge
r

L
D

A

T
ex

tR
an

k

E
n
ro

n

U
D

C

B
S
C

SumBasic – 0.78 0.8 0.8 0.82 0.76 0.73 0.71 – 0.74 0.76 0.77 0.79 0.7 0.66 0.63
Edmondson 0.79 – 0.76 0.86 0.83 0.77 0.73 0.73 0.75 – 0.72 0.82 0.8 0.73 0.69 0.64
Steinberger 0.78 0.85 – 0.86 0.79 0.74 0.7 0.66 0.74 0.79 – 0.82 0.77 0.68 0.68 0.65
LDA 0.82 0.78 0.81 – 0.8 0.79 0.75 0.7 0.79 0.74 0.77 – 0.78 0.7 0.66 0.6
TextRank 0.79 0.73 0.78 0.8 – 0.74 0.69 0.67 0.77 0.7 0.75 0.78 – 0.69 0.65 0.6
Enron 0.65 0.66 0.7 0.7 0.73 – 0.81 0.79 0.69 0.7 0.71 0.7 0.71 – 0.83 0.81
UDC 0.64 0.63 0.68 0.65 0.63 0.94 – 0.91 0.61 0.61 0.63 0.6 0.61 0.85 – 0.84
BSC 0.6 0.61 0.6 0.59 0.61 0.95 0.96 – 0.55 0.55 0.52 0.56 0.59 0.88 0.88 –

ESSMArT Way to Manage customer requests 15

Precision Recall F-Score

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
t
e
in

b
.

E
d
m

o
n
.

S
u
m

B
a
s
.

E
n
r
o
n

L
D
A

T
e
x
t
R
a
.

U
D

C

B
S
C

Methods

Fig. 6 Performance of extractive summarization techniques in comparison with human gen-
erated summaries using ROUGE-SU

conversation with the customers. We compared the eight techniques pairwise based on
ROUGE and ROUGE-SU measures. Table 4 shows the result of pairwise comparison
of the summarization techniques. Within this table, each row is compared with the
technique in the column being considered as the baseline summary. As a general trend,
the results of supervised learning methods (Enron, UDC, and BSC) are performing
closely similar to each other. Among the unsupervised methods, TextRank almost al-
ways worked better than the others.

We further compared these methods by comparing these eight different summa-
rization methods with summaries from CRM experts at Brightsquid. As illustrated in
Figure 6 we found that the supervised extractive summarization trained on Bright-
squid data performs best, but it is only 4.2% better in terms of F1-score than the
classifier trained with the Ubuntu dataset (UDC). TextRank as an unsupervised learn-
ing method performs as the third best method in our case study. Overall, Steinberger
is the worst performing classifier. It is 20% less accurate than BSC in terms of the
F1-score. Considering the effort needed to prepare training sets, unsupervised methods
are proven to be an alternative to supervised methods.

Supervised learning based on context specific Brightsquid data performs best for
summarizing customer request and outperforms the best unsupervised technique by

10%.

5.2 RQ2: Predicting escalation

We compared three state-of-the art classifiers that exhibit good performance with a
short text to predict the escalation of a user’s requests, the priority of the tickets, and
the developers assigned to it.

We used mRMR to select non-textual content for predicting escalation. However, we
did not find any of the attributes Att2 to Att13 significantly increased the accuracy of

16 Maleknaz Nayebi et al.

Table 5 Evaluation of classification algorithms for predicting tickets’ escalation.

Naive Bayes Precision Recall F1
Conversation 0.83 0.45 0.58
Conversation + Lemmatization 0.85 0.49 0.62
Extractive summary + Lemmatization 0.82 0.43 0.57
Conversation + Extractive summary + Lemmatization 0.86 0.53 0.65

Support Vector Machine (SVM) Precision Recall F1
Conversation 0.64 0.43 0.51
Conversation + Lemmatization 0.62 0.45 0.52
Extractive summary + Lemmatization 0.60 0.42 0.49
Conversation + Extractive summary + Lemmatization 0.62 0.49 0.54

RandomForest Precision Recall F1
Conversation 0.88 0.49 0.62
Conversation + Lemmatization 0.89 0.53 0.66
Extractive summary + Lemmatization 0.89 0.42 0.56
Conversation + Extractive summary + Lemmatization 0.90 0.55 0.68

the predictive model (Step 2 of ESMMArT). This is aligned with the current prac-
tice at Brightsquid. In Brightsquid the content of the conversation, specifically the
communicated concern by the customer, is the only decisive factor for the CRM team
to escalate a ticket to the development team. As a result, we focused our effort on
automating escalation only on the content of the tickets.

To deal with the imbalanced number of escalated and non-escalated tickets, we
down-sampled the non-escalated conversations. We benchmarked different techniques
for increasing the accuracy of the textual similarity analysis such as customizing the
list of stop words, lemmatization, stemming, BOW (bag-of-words), TF-IDF, and used
extractive summaries for predicting escalation. Overall, we found that by using tf-idf
the F1-score of the three classifiers is better by 8.7% on average. Also, we found that by
using lemmatization instead of Porter’s stemming, the F1-scores were improved by 4.3%
on average. Our results also showed that eliminating a customized set of stop words
from the conversation increases the accuracy of the classifier by 6.1% on average. Table
5 summarizes the results of the classification techniques using the 4,114 conversations
to predict ticket escalation. Within the tables, the numbers in italic font represent the
corresponding top values. The confusion matrix is presented in Appendix II.

The classifiers used were Support Vector Machine, Naive Bayes, and Random For-
est. For each of them, four alternatives were evaluated. Looking at the F1 measure as
the one balancing precision and recall, we found that the combination of just looking
at the conversation and the extractive summary in combination with lemmatization
performed the most promising. When comparing the classification techniques, Random
Forest performs best in terms of precision, and best in F1 on the best configuration. In
contrast, SVM seems to be the lowest performing among the three techniques overall.

Random Forest classifier trained on a combination of conversation and extractive
summarization outperforms the other models in terms of precision. Using the

extractive summaries increases the F1-score of the prediction.

ESSMArT Way to Manage customer requests 17

Precision Recall F-Score

0.5

0.55

0.60

0.65

0.7

0.75

0.8

E
d
m

o
n
.

S
t
e
in

b
.

S
u
m

B
a
s
.

E
n
r
o
n

L
D
A

T
e
x
t
R
a
.

U
D

C

B
S
C

Methods

Fig. 7 Comparison of the content of the development tickets generated by human experts
with the ones generated with different summarization techniques and the thesaurus in RQ3
using ROUGE-SU.

5.3 RQ3: Quality of automatically generated ticket content

Each development ticket consists of content and a title. ESSMArT suggests the ticket
content by using a thesaurus for mapping and by generalizing entities from extractive
summaries of RQ1 as input. The ticket title is created from using abstractive summa-
rization. We report the results of evaluating the content and title of these tickets.

Evaluating the content of the development tickets: To bridge between the customer
request and the development ticket we built a thesaurus that maps the customer ter-
minology and specific names into the developers’ terminology or general entities.

For building the thesaurus we used 304 separate documents including customer
stories, release notes, organization and brand descriptions, and team descriptions. As
the result of this automated process, we built a thesaurus with 3,301 entries. We man-
ually went through this thesaurus and in particular searched for the personnel names.
We mapped each specific personnel name to an organizational role. For each distinct
specific name (1,908 out of 2,467) we entered three separate entries for the first name,
surname and the name as a whole. We ended up with a thesaurus with 7,117 entries in
total. We then used ROUGE-SU for evaluating the alignment of the generated tickets
with the tickets extracted by human experts.

Figure 7 shows the results of the comparison between automated and manually
created tickets. In a majority of cases, the precision of the classifiers is better than
their recall. Looking into the F1-Score, the combination of the supervised learning
method and thesaurus performs best. Interestingly, unsupervised methods based on
the graph model of represented indicators (TextRank [35]) combined with the use of
our thesaurus performed well.

Supervised learning trained on Brightsquid data combined with the use of a
thesaurus performs best among all techniques. The accuracy is 5% better than the

best unsupervised method in terms of F1-score.

18 Maleknaz Nayebi et al.

Evaluating the title of the development tickets: We compared the titles created using
abstractive summarization with the human-generated titles using ROUGE-SU. Within
the process of creating the ticket titles, we limited the size of the abstractive summary
to 11 words as it was the average length of the ticket titles in Brightsquid. We presented
the results of this comparison in Table 6. Training the model based on the Brightsquid
data performed the best among the other models having an F1-score of 0.65.

5.4 RQ4: Prioritization and assignment of tickets

We compared three state of the art classifiers with good performance proven in other
contexts. We used the ticket title to predict the priority of the escalated tickets and
assign it to a developer.

5.4.1 Prediction of the priority of escalated tickets

Several attributes are recorded along with the customer requests as shown in Table
3. The mRMR analysis showed the importance of organization and brand name for pre-
dicting the priority of the tickets. We compared three classifiers, Naive Bayes, Support

Table 6 Ticket titles using ESSMArT summarization in comparison with human experts
using ROUGE-SU.

Abstractive summarization Precision Recall F1
Enron 0.61 0.57 0.59
UDC 0.56 0.53 0.54
BSC 0.68 0.63 0.65

Table 7 Evaluation of classification algorithms for predicting tickets’ priority.

Naive Bayes Precision Recall F1
Conversation 0.64 0.61 0.62
Extractive summary 0.64 0.62 0.63
Conversation + Extractive summary 0.68 0.63 0.65
Abstractive summary + Extractive summary 0.68 0.66 0.67
Conversation + Abstractive summary + Extractive summary 0.68 0.66 0.67
Abstractive summary + Extractive summary + Organization
+ Brand name 0.74 0.72 0.73

Support Vector Machine Precision Recall F1
Conversation 0.52 0.51 0.51
Extractive summary 0.52 0.53 0.52
Conversation + Extractive summary 0.55 0.53 0.54
Abstractive summary + Extractive summary 0.56 0.53 0.54
Conversation + Abstractive summary + Extractive summary 0.58 0.55 0.56
Abstractive summary + Extractive summary + Organization
+ Brand name 0.70 0.67 0.68

Random Forest Precision Recall F1
Conversation 0.64 0.62 0.63
Extractive summary 0.66 0.63 0.64
Conversation + Extractive summary 0.66 0.63 0.64
Abstractive summary + Extractive summary 0.69 0.66 0.67
Conversation + Abstractive summary + Extractive summary 0.70 0.68 0.69
Abstractive summary + Extractive summary + Organization
+ Brand name 0.73 0.70 0.71

ESSMArT Way to Manage customer requests 19

Vector Machine (SVM), and Random Forest. We benchmarked the performance of
these classifiers using the conversation between customers and Brightsquid, the ex-
tractive and abstractive summaries of the apps, as well as the organization and brand
name attributes. Similar to the escalation prediction in the previous section, we eval-
uated the impact of different text pre-processing and processing methods. In all cases,
lemmatization was applied. The results of our benchmark are shown in Table 7. The
confusion matrix is presented in Appendix II.

When using the textual content of the conversation only, Random Forest classifiers
have a slightly better performance in comparison to Naive Bayes. Using extractive
and abstractive summaries for predicting the tickets priority increased the F1-score of
the classifiers up to 8.6% on average. Having abstractive summarization on top of that
further increased the F1-score. Moreover, using organization and brand name increased
the F1-score by up to 12.3%. When comparing across all pre-processing and processing
options, a Naive Bayes classifier using both textual and non-textual attributes performs
best.

5.4.2 Assignment of tickets to developers

Similar to what we did for predicting prioritization, we compared the three state of
the art classifiers with multiple textual attributes. The results of this benchmarking
are shown in Table 8. The results showed that similar to the ticket prioritization, using
the content of the conversation along with the abstractive and extractive summaries
performs the best and Naive Bayes outperforms SVM and Random Forest in this task.
The confusion matrix is presented in Appendix II.

We used mRMR to select non-textual features (as listed in Table 3 and found brand
name as an important factor for ticket assignment. On average, using the brand name
on top of the textual features increased the F1-Score of the classifiers.

Using Naive Bayes perform the best for prioritizing (F1-score = 0.73) and assigning
the tickets (F1-score = 0.86). The results showed that using extractive and

abstractive summarization along with other features increases the accuracy of these
predictions.

6 External evaluation

So far, we built and compared the state-of-the-art techniques known for the different
stages in the process of managing customer requests. As a form of retrospective analysis,
we called that internal evaluation. However, the question of the perceived value of
applying the method is still open. In this section, ESSMArT is evaluated by CRM
experts and project managers. The section is closely related to RQ5, and is called
external evaluation. The subjects are asked whether ESSMArT makes the process of
escalation faster and better. As we did not have access to employees of Brightsquid, we
recruited 21 CRM experts and 33 project managers from outside. We used convenient
sampling for recruiting participants from social media to participate in this study. The
whole external evaluation is described in the subsequent subsections.

20 Maleknaz Nayebi et al.

6.1 Protocol for external evaluation of ESSMArT

To evaluate the performance of ESSMArT, we asked CRM experts and project man-
agers to go through the escalation of a sample set of customer requests, first without
and then with using ESSMArT. Offering the task through social platforms, we at-
tracted 21 CRM experts and 33 project managers to participate. The CRM experts
participating in our study had 4.5 years of experience in a related job on average with
a minimum of 18 months and a maximum of 13 years of experience. The participating
project managers had an average of 6.2 years of experience in a related job, with a
minimum of 4 years and a maximum of 16 years. We assigned 15 escalated customer
requests to each CRM expert to perform the evaluation.

For the evaluation, we first performed a manual process for escalating tickets and
then we used ESSMArT:

Manual process: We provided the complete conversation of 315 Brightsquid customer
requests and asked to provide a summary. Each CRM expert evaluated 15 anonymized
conversations and was asked to decide if each ticket should be escalated. Furthermore,
we asked each to provide an extractive summary by selecting a subset of sentences of
the conversation, without applying any rewording [49]. We recorded the time needed
per ticket called Escalationtime.
We submitted the summary of 315 customer requests to the 33 project managers
participating in our experiment. Each project manager prepared a development ticket
based on the summarized customer request. We recorded this time as Decisiontime.
The screenshot of the survey for manual escalation is shown in Figure 8.

ESSMArT way: We provided the prototype implementation of ESSMArT to the CRM
experts and the project managers. We logged the time taken by them to perform
each step. To make the results comparable with the manual process, we did not allow

Table 8 Evaluation of classification algorithms for assigning tickets to developers.

Naive Bayes Precision Recall F1
Conversation 0.8 0.83 0.81
Extractive summary 0.81 0.83 0.82
Conversation + Extractive summary 0.85 0.83 0.84
Abstractive summary + Extractive summary 0.85 0.84 0.84
Conversation + Abstractive summary + Extractive summary 0.87 0.84 0.85
Abstractive summary + Extractive summary + Brand name 0.89 0.84 0.86

Support Vector Machine Precision Recall F1
Conversation 0.68 0.61 0.64
Extractive summary 0.68 0.62 0.65
Conversation + Extractive summary 0.68 0.63 0.65
Abstractive summary + Extractive summary 0.69 0.65 0.67
Conversation + Abstractive summary + Extractive summary 0.71 0.67 0.69
Abstractive summary + Extractive summary + Brand name 0.74 0.68 0.71

Random Forest Precision Recall F1
Conversation 0.72 0.73 0.72
Extractive summary 0.76 0.73 0.74
Conversation + Extractive summary 0.76 0.75 0.75
Abstractive summary + Extractive summary 0.78 0.74 0.76
Conversation + Abstractive summary + Extractive summary 0.8 0.78 0.79
Abstractive summary + Extractive summary + Brand name 0.83 0.78 0.8

ESSMArT Way to Manage customer requests 21

any CRM expert or project manager to work on any ticket they had already handled
in the manual process. Figure 9 shows the screenshot of ESSMArT for a sample
request. The left screen shows the ESSMArT UI for CRM experts used to log the
Escalationtime while the right one is the UI shown to the project managers and
logged as Decisiontime.

6.2 RQ5: Usefulness of ESSMArT for Experts

For the external evaluation, we surveyed experts to find the usefulness of the results
and to figure out if the process would be faster for humans using our prototype tool.

6.2.1 Are the ESSMArT results aligned with perception of the external experts?

We compared the sentences selected by CRM experts with those selected by ESSMArT.
Based on the results of internal evaluation in Section 5, we used Random Forest trained
with former Brightsquid data for summarization. We asked survey participants in the
role of CRM to select the most representative sentences. Comparing the selected sen-
tences selected by ESSMArT and CRM experts resulted in 0.71 precision and 0.77
recall (F1 − score = 0.73). Figure 10 - (a) shows the distribution of the number of
sentences that were selected differently between ESSMArT and human experts. To
evaluate the alignment of the tickets generates by ESSMArT with those generated by
human experts, we tracked the number of words changed by project managers on the
ESSMArT generated ticket. Figure 10 - (b) shows the distribution of the changed words
for the 315 customer requests. In 25% of the tickets no word were changed and in 8.5%
of the cases, more than 10 words were changed. Overall, across 315 customer requests,
3.7 words on average were changed by human experts.

Figure 11 shows the results of the questions asked to the 54 survey participants. The
survey questions are presented as Appendix III to the paper. We asked the participants
how much they agree that the ESSMArT results were understandable. Only 1.9% (one)
of the participants disagreed with this statement. 51.9% of the participants stated they
likely or very likely would use ESSMArT in practice. Trusting decision support tools is

Fig. 8 Process of manual escalation for evaluation of ESSMArT. The left screen shot was
shown to the CRM experts while the right one was shown to the project managers.

22 Maleknaz Nayebi et al.

Fig. 9 Applying the prototype tool of ESSMArT, the left figure shows the summarization
of a sample customer request. The right one suggests the content and title of the sample
development ticket.

a common problem in their usability [13]. 68.6% of participants stated that they trust
the ESSMArT results while 7.5% of them stated it is unlikely that they would trust
the results.

ESSMArT provides suggestions that are 71% aligned to the selection of human
experts. The average change of 7.5% words per ticket also demonstrates the

usefulness of its results for project managers.

6.3 Does ESSMArT make the escalation process faster?

We logged the Escalationtime and Decisiontime for 315 customer requests when done
completely manual and by using ESSMArT. Figure 12 shows the the time taken for
each of these tasks. Figure 12 - (a) shows the Escalationtime for CRM experts with
and without ESSMarT. Using ESSMArT reduces Escalationtime by 3.2 minutes on
average, per ticket:

(i) ESSMArT (Escalationtime) < Manual(Escalationtime): For 297 (94.2%) of the
requests, ESSMArT allowed CRM experts do the task faster.

(ii) ESSMArT (Escalationtime) ≥ Manual(Escalationtime): For 18 (5.8%) of the cus-
tomer requests ESSMArT appeared not helpful in making the process faster. In
these cases, the manual process took on average 0.35 seconds less time for es-
calation. Considering the small number of cases, small time difference between
cases, and the same ticket having been escalated by different participants for
manual and ESSMArT enabled process, we attribute variances to differences in
participant cognitive abilitities as well as possible participant distractions.

Similarly, we logged and compared the Decisiontime for the participated project
managers. In this case, the Decisiontime has been improved in all cases. Using ESS-
MArT allowed project managers to decide on average 6.3 minutes faster in comparison

ESSMArT Way to Manage customer requests 23

of sentences different between
ESSMArT and surveyed experts

#
o
f
s
e
n
t
e
n
c
e
s

0

1

2

3

4

#
o
f
w
o
r
d
s

of words changed in the tickets
generated by ESSMArT

0

10

20

30

40

Fig. 10 Analysis of the response to the survey questions from 21 CRM experts and 33 project
managers in terms of the number of different sentences (left) and the number of words changed
(right).

to the manual process. Figure 12-(b) shows the boxplot for the time taken by project
managers to decide on a ticket with and without using ESSMArT.

Independently, we asked the survey participants how likely ESSMArT usage would
reduce the cycle time of change requests. 48.2% of the participants agreed or strongly
agreed that ESSMArT reduces the time needed for escalating a customer request. Of
the CRM experts, 54.4% agreed and 30.3% strongly agreed that ESSMArT make their
job faster and 42.9% of the project managers agreed with 23.8% strongly agreeing
about the same for their escalation tasks. Figure 12-(c) shows the total time saved for
each expert across all the tickets.

Understandability of ESSMArT results

Using ESSMArT in practice

Trusting ESSMArT results

Reduce the cycle time of change requests

Reduce time needed for CRM task

Reduce time needed for PM task

0% 1.9% 25.9% 57.4% 14.8%

3.7% 9.3% 35.2% 42.6% 9.3%

1.9% 5.6% 24.1% 63% 5.6%

3.7% 13% 35.2% 24.1% 24.1%

0% 9.1% 6.1% 54.4% 30.3%

9.5% 9.5% 14.3% 42.9% 23.8%

Strongly
positive

Strongly
negative Neutral

Fig. 11 Analysis of responses from 21 CRM experts and 33 project managers having partici-
pated in the survey.

24 Maleknaz Nayebi et al.

Manual ESSMArT Manual ESSMArT

T
im

e
(
m

in
u
t
e
s
)

0

2

4

6

8

10

0

5

10

15

20

25

30

35

CRM Experts Project Managers

30

35

40

45

50

55

CRM Project
Manager

Time difference with and
without ESSMart per expert

Fig. 12 The logged time when the escalation is done manually versus escalation using ES-
SMArT. This is the sum of the time taken by CRM experts and by project managers in
categorizing 315 change requests.

ESSMArT reduces the escalation time of a change request by 9.2 minutes on
average. 84.7% of the CRM experts and 66.7% of project managers agreed or

strongly agreed that ESSMArT helps them to perform the task faster.

7 Discussion

7.1 Scope of ESSMArT

We focused on a system to support the decision of CRM experts and the project man-
agers with the intent to increase the satisfaction of the end users (customers). Software
engineering literature is rich in providing decision support and recommendations for
software developers for different tasks [51], such as finding the resolution of a reported
bug or assigning developers to bugs. Nowadays, there is often some level of automation
for development decisions in software companies (like Brightsquid). In this study, we
have not studied the overhead for integrating ESSMArT with such existing systems.
On the other hand, we do not have any evidence or indication if the full automation
of the whole pipeline is desirable as that would involve more stakeholders in a sin-
gle decision support system and increase the cost of maintenance. Hence, one might
gather evidence on the pros and cons of extending the scope of ESSMArT to support
development decisions and possibly extend ESSMArT.

7.2 Criteria for selecting machine learning models

Understandability of the results. With the recent advances in machine learning
state of the art and practice there is an increasing temptation to use the methods that
result in the highest precision and accuracy in the results. Understanding the logic and
process that leads into a particular machine learning result often needs solid scien-
tific understanding of the underlying model and techniques. To this end, the decision
maker should understand the reasoning behind automated models to trust and use the
results. In the case of this study with Brightsquid, we assisted three types of decision
makers: CRM staff, CRM chief, and project manager. They all confirmed the need for
understandability of the automation results for adopting and integrating ESSMArT.

ESSMArT Way to Manage customer requests 25

Building on top of the existing practices. We emphasized the importance
of reusing the state of the art practices. We selected and used techniques and data
sets that were replicable and preferably used the open source implementation of the
techniques. While this was not possible for all the benchmarked techniques, most of
the ESSMArT modules are based on open libraries.

7.3 Training machine learning models

We studied the usefulness of features (textual and non-textual) in increasing the accu-
racy of our machine learning models. However;.

– In predicting escalation (Section 5.2), none of the Att2 to Att13 significantly in-
crease the accuracy of our predictive model (Step 2) hence we relied on content of
the conversations only. This was also aligned with the current practice at Bright-
squid.

– The mRMR analysis showed the importance of Organization (Att13) and brand
name (Att12) in predicting the priority of the tickets (Section 5.4.1).

– Using the same method, we found that only brand name (Att12) is an important
feature for predicting the assignment of the tickets (Section 5.4.2).

In a nutshell, our study showed that using more features does not necessarily imply
better performance of machine learning techniques. We follow the argumentation of
Lemberger et al. [25] that simpler models make it easier for users to understand and
accept the suggestions made by them.

8 Limitations and threats to validity

The ESSMArT process described in Figure 2 is general enough to be applicable be-
yond Brightsquid. One key prerequisite for the applicability is the existence of both
a customer ticket as well as a developer ticket system. In any case, the results of our
study should be treated with caution due to the existing threats to validity discussed
below.

Construct validity - To measure the quality of summarization techniques for condens-
ing customer request we used the ROUGE metrics as it was shown valid results in
similar contexts before. In most of the comparisons, we compared the result of summa-
rization with the content generated by human experts at Brightsquid, retrospectively.
For training machine learning extractive summarization, we used a human annotator
which her annotation might have been biased and impose threats to the validity of the
results. Ideally, the threat would be mitigated by involving more than one person in
the annotation process (e.g as done in [42]). In former studies, with the intent to find
the best summarization method, researchers asked external developers to take the bug
reports and select a subset of the sentences. We extended the scope of the evaluation
and intended to provide evidence that the results of our automation could be used to
assist human experts.

We trained and compared classifiers using the term frequency-inverse document fre-
quency (TF-IDF) values of the words that make up the tickets. We did not experiment

26 Maleknaz Nayebi et al.

with more advanced, sematic-exploring methods word2vec and doc2vec. First, they are
requiring higher effort. Second, we were following the “Principles of Industrial Data
Mining” arguments of Menzies et al. [34] emphasizing the importance of users versus
algorithms. The main argument was that the “return-on-investment” of ESSMArT was
evaluated very positive from an industrial perspective (see Section 6), so we did not
further invest substantially into refinements of algorithms. We needed to explain the
methods clearly and the achieved results to make the industry admittance possible.

External validity - Selection of techniques for ESSMArT and validation of the different
steps were closely connected with the real-world data set of 4,114 tickets. At each step
of ESSMArT we compared and selected among state of the art methods. However, our
study and the results are limited to the context of Brightsquid. The challenge for testing
ESSMArT in other contexts is access to the holistic dataset of the whole process. This
limits our ability to provide evidence on the generalizability of the method. The process
of managing customer requests is not unique to BrightSquid which makes ESSMArT
useful for other software companies.

Also, we used convenient sampling which imposes the risk of a selection bias and
thus causing a lack of credibility in general. However, it was considered acceptable as
it just served as an initial evaluation for exploratory purposes [24].

Internal validity - To provide evidence that ESSMArT makes the escalation process
faster, we used experts from outside Brightsquid. We mitigated this risk by careful
screening of the participants and their background.

Conclusion validity - We analyzed the tickets of Brightsquid within a limited time
frame available. The methods of the company might change over the lifetime of the
projects, and the same is true for their customers. While we compared the length of
the tickets for different CRM employees, the CRM manager, and the project manager
were always the same person. A change in the staff might slightly change the results
presented in this paper caused by the difference in their interaction with customers,
text, and tickets. Also, for a few customer requests (18 cases), ESSMArT appeared to
be not helpful in making the process faster. Considering the small number of cases and
the small amount of slowdown, we believe that these rare cases happen because of the
difference between the cognitive ability of the participants and possible distractions.

9 Conclusions and Future Work

ESSMArt addresses customer request management from a holistic perspective and
supports decision-makers by providing them with intelligent suggestions within the
process. CRM is a key factor for keeping customers satisfied. The main intention of
ESSMArT was NOT to fully automate and completely exclude humans from the pro-
cess. However, Brightsquid was highly interested in reducing the resource bottleneck,
while keeping the humans in the loop.

We looked into the whole process from the time of receiving a request or question
from a customer to the time that the problem is resolved by the CRM or a task is
assigned to a developer. This is unique as the existing research has been focused on
the steps of this process in isolation only. The method development was inspired by
the industrial collaboration project with Brightsquid. However, its underlying process
is following the general steps of customer request management and thus is applicable

ESSMArT Way to Manage customer requests 27

more broadly. We believe that automating the management of customer requests and
their escalation would increase the chance of innovation within organizations [43].

We consider the results as necessary, but not sufficient for claiming external validity.
More empirical evaluation of the individual steps of the method as well as on the
impact of the whole method is required. In particular, as the data is coming from one
company only, the evaluation needs to be extended to other environments. Also, the
existing prototype tool was intended to perform an initial evaluation and needs to be
further enhanced and more comprehensively tested.

Acknowledgment

This research was partially supported by the Natural Sciences and Engineering Re-
search Council of Canada, NSERC Discovery Grant RGPIN-2017-03948 and the NSERC
Collaborative Research and development project NSERC-CRD-486636-2015. We ap-
preciate the discussion with and suggestions made by Lloyd Montgomery and acknowl-
edge all the comments and suggestions made by the anonymous reviewers.

28 Maleknaz Nayebi et al.

References

1. M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,
and K. Kochut. Text summarization techniques: A brief survey. arXiv preprint
arXiv:1707.02268, 2017.

2. J. Anvik. Evaluating an assistant for creating bug report assignment recommenders.
volume 1705, pages 26–39, 2016.

3. J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proceedings of the
28th international conference on Software engineering, pages 361–370. ACM, 2006.

4. B. Auffarth, M. López, and J. Cerquides. Comparison of redundancy and relevance mea-
sures for feature selection in tissue classification of ct images. In Industrial Conference on
Data Mining, pages 248–262. Springer, 2010.

5. D. H. Bandera, D. A. Bell, A. D. Little, and B. B. York. Increasing efficiency and effec-
tiveness of support engineers in resolving problem tickets, Apr. 19 2018. US Patent App.
15/293,988.

6. S. Banerjee, P. Mitra, and K. Sugiyama. Multi-document abstractive summarization using
ilp based multi-sentence compression. In IJCAI, pages 1208–1214, 2015.

7. J. Batista, R. Ferreira, H. Tomaz, R. Ferreira, R. Dueire Lins, S. Simske, G. Silva, and
M. Riss. A quantitative and qualitative assessment of automatic text summarization
systems. In Proceedings of the 2015 ACM Symposium on Document Engineering, DocEng
’15, pages 65–68, New York, NY, USA, 2015. ACM.

8. T. Bruckhaus, C. X. Ling, N. H. Madhavji, and S. Sheng. Software escalation prediction
with data mining. In Workshop on Predictive Software Models (PSM 2004), A STEP
Software Technology & Engineering Practice, 2004.

9. G. Carenini, R. T. Ng, and X. Zhou. Summarizing email conversations with clue words.
In Proceedings of the 16th international conference on World Wide Web, pages 91–100.
ACM, 2007.

10. N. Cerpa, M. Bardeen, C. A. Astudillo, and J. Verner. Evaluating different families of
prediction methods for estimating software project outcomes. Journal of Systems and
Software, 112:48–64, 2016.

11. D. Das and A. F. Martins. A survey on automatic text summarization. Literature Survey
for the Language and Statistics II course at CMU, 4:192–195, 2007.

12. A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio, G. Canfora,
and H. C. Gall. What would users change in my app? summarizing app reviews for recom-
mending software changes. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 499–510. ACM, 2016.

13. G. Du and G. Ruhe. Does explanation improve the acceptance of decision support for
product release planning? In Empirical Software Engineering and Measurement, 2009.
ESEM 2009. 3rd International Symposium on, pages 56–68. IEEE, 2009.

14. H. P. Edmundson. New methods in automatic extracting. Journal of the ACM (JACM),
16(2):264–285, 1969.

15. M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review on ensem-
bles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 42(4):463–484, July 2012.

16. M. Gambhir and V. Gupta. Recent automatic text summarization techniques: a survey.
Artificial Intelligence Review, 47(1):1–66, Jan 2017.

17. V. Gupta and G. S. Lehal. A survey of text summarization extractive techniques. Journal
of emerging technologies in web intelligence, 2(3):258–268, 2010.

18. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector ma-
chines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

19. A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46.
John Wiley & Sons, 2004.

20. N. Jha and A. Mahmoud. Using frame semantics for classifying and summarizing appli-
cation store reviews. Empirical Software Engineering, pages 1–34, 2018.

21. L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson. Automated bug
assignment: Ensemble-based machine learning in large scale industrial contexts. Empirical
Software Engineering, 21(4):1533–1578, 2016.

22. S. J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson, and F. Chew. Predicting the vector impact
of change-an industrial case study at brightsquid. In Empirical Software Engineering and
Measurement (ESEM), 2017 ACM/IEEE International Symposium on, pages 131–140.
IEEE, 2017.

ESSMArT Way to Manage customer requests 29

23. S. Kim and M. D. Ernst. Which warnings should i fix first? In Proceedings of the the 6th
joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 45–54. ACM, 2007.

24. B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys. In Guide to advanced
empirical software engineering, pages 63–92. Springer, 2008.

25. P. P. Lemberger and M. Morel. Managing Complexity of Information Systems: The Value
of Simplicity. John Wiley & Sons, 2013.

26. A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R news, 2(3):18–
22, 2002.

27. C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. Text Summarization
Branches Out, 2004.

28. C. X. Ling, S. Sheng, T. Bruckhaus, and N. H. Madhavji. Predicting software escalations
with maximum roi. In Data Mining, Fifth IEEE International Conference on, pages 4–pp.
IEEE, 2005.

29. W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven requirements engi-
neering. Software, IEEE, 33(1):48–54, 2016.

30. R. Malhotra. A systematic review of machine learning techniques for software fault pre-
diction. Applied Soft Computing, 27:504–518, 2015.

31. S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. Ausum: approach for unsupervised
bug report summarization. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 11. ACM, 2012.

32. C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. The stanford
corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, pages 55–60, 2014.

33. W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app store analysis for
software engineering. IEEE transactions on software engineering, 43(9):817–847, 2017.

34. T. Menzies, C. Bird, T. Zimmermann, W. Schulte, and E. Kocaganeli. The inductive
software engineering manifesto: principles for industrial data mining. In Proceedings of
the International Workshop on Machine Learning Technologies in Software Engineering,
pages 19–26. ACM, 2011.

35. R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004
conference on empirical methods in natural language processing, 2004.

36. B. Mohit. Named entity recognition. In Natural language processing of semitic languages,
pages 221–245. Springer, 2014.

37. L. Montgomery and D. Damian. What do support analysts know about their customers?
on the study and prediction of support ticket escalations in large software organizations. In
Requirements Engineering Conference (RE), 2017 IEEE 25th International, pages 362–
371. IEEE, 2017.

38. L. Montgomery, E. Reading, and D. Damian. Ecrits—visualizing support ticket escalation
risk. In Requirements Engineering Conference (RE), 2017 IEEE 25th International, pages
452–455. IEEE, 2017.

39. L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Automatic
generation of release notes. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 484–495. ACM, 2014.

40. G. Murray and G. Carenini. Summarizing spoken and written conversations. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, pages
773–782. Association for Computational Linguistics, 2008.

41. M. Nayebi, S. Kabeer, G. Ruhe, C. Carlson, and F. Chew. Hybrid labels are the new
measure! 2018.

42. M. Nayebi, M. Marbouti, R. Quapp, F. Maurer, and G. Ruhe. Crowdsourced exploration
of mobile app features: A case study of the fort mcmurray wildfire. In Proceedings of the
39th International Conference on Software Engineering: Software Engineering in Society
Track, pages 57–66. IEEE Press, 2017.

43. M. Nayebi and G. Ruhe. Analytical open innovation for value-optimized service portfolio
planning. In International Conference of Software Business, pages 273–288. Springer,
2014.

44. M. Nayebi, G. Ruhe, R. C. Mota, and M. Mufti. Analytics for software project
management–where are we and where do we go? In Automated Software Engineering
Workshop (ASEW), 2015 30th IEEE/ACM International Conference on, pages 18–21.
IEEE, 2015.

30 Maleknaz Nayebi et al.

45. N. Nazar, Y. Hu, and H. Jiang. Summarizing software artifacts: A literature review.
Journal of Computer Science and Technology, 31(5):883–909, 2016.

46. H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern
analysis and machine intelligence, 27(8):1226–1238, 2005.

47. J. Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceed-
ings of the first instructional conference on machine learning, volume 242, pages 133–142,
2003.

48. S. Rastkar, G. C. Murphy, and G. Murray. Summarizing software artifacts: A case study
of bug reports. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 505–514, New York, NY, USA, 2010.
ACM.

49. S. Rastkar, G. C. Murphy, and G. Murray. Automatic summarization of bug reports.
IEEE Transactions on Software Engineering, 40(4):366–380, 2014.

50. I. Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on
empirical methods in artificial intelligence, volume 3, pages 41–46. IBM New York, 2001.

51. M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann. Recommendation systems
in software engineering. Springer Science & Business, 2014.

52. H. Schütze. Automatic word sense discrimination. Computational linguistics, 24(1):97–
123, 1998.

53. V. S. Sheng, B. Gu, W. Fang, and J. Wu. Cost-sensitive learning for defect escalation.
Knowledge-Based Systems, 66:146–155, 2014.

54. S. Singhal and A. Bhattacharya. Abstractive text summarization.
55. J. Steinberger and K. Jezek. Using latent semantic analysis in text summarization and

summary evaluation. Proc. ISIM, 4:93–100, 2004.
56. L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond sumbasic: Task-focused

summarization with sentence simplification and lexical expansion. Information Processing
& Management, 43(6):1606–1618, 2007.

57. H. M. Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd inter-
national conference on Machine learning, pages 977–984. ACM, 2006.

58. G. Williams and A. Mahmoud. Mining twitter feeds for software user requirements. In
Requirements Engineering Conference (RE), 2017 IEEE 25th International, pages 1–10.
IEEE, 2017.

59. S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

60. D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.
61. X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang. Improving automated

bug triaging with specialized topic model. IEEE Transactions on Software Engineering,
43(3):272–297, 2017.

62. T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based
natural language processing. ieee Computational intelligenCe magazine, 13(3):55–75, 2018.

63. L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy.
Journal of machine learning research, 5(Oct):1205–1224, 2004.

ESSMArT Way to Manage customer requests 31

Appendix I - Illustrative Example for Comparison of Processes

In this appendix we provide an anonymized Brightsquid customer support example to
compare the traditional process of managing customer requests with the ESSMArT
process.

Traditional process of managing customer requests at Brightsquid:

Customers report issues to Brightsquid via telephone, chat or email, and issues
are recorded in Zendesk. In this example, illustrated in Figure 13 below, the customer
(Bob) contacts the CRM team, concerned about the management of secure messages in
a team environment. The CRM agent (Alice) elaborates on the problem and provides
a summary for the customer’s approval. Once Bob approves the description, Alice
decides whether to escalate the ticket or resolve it on her own. If unable to determine
a solution, Alice escalates the issue and informs Bob. The CRM manager (Carol),
who is responsible for resolving or further escalating issues to the development project
manager, reads through the ticket, expands upon the description as necessary, and
escalates the issue to the project manager. The project manager (Erin) defines the
ticket’s priority and assigns it to the most appropriate developer for resolution.

Nurse

BP

Conversation

Bob (customer): John had emailed me and wanted a
copy of a massage note faxed to him. I send John back
a note, with the massage note attached. He sends me
back a thank you. We now have three emails in our
string. Once I have deleted my note on Mr. Smith,
everyone else on the Yellow Team still has that email.
Unless I specifically tell everyone to delete it or unless
the rest of the Yellow Team goes into the EMR and
looks into Johns chart to see if its done, no one has any
way of knowing the task has been dealt with. Is there a
way to delete that task from everyones inbox?

Alice (CRM agent): Does this summary captures your
request? As an office administrator who receives mes-
sages from patients, there is no indication in Secure-Mail
to let me know if another administrator has handled a
patient request.So, when a patient gets multiple replies.
It would be better if it was more evident that a patients
message has been dealt with.

Bob: Yes Alice, this summary is good.

Subject: Notification of Message Handled

Tags: minor, patient, sharedinbox

Ticket type: Incident Severity: Minor

Ticket

Summary: As a staff member I need to
know if my co-worker has responded a re-
ceived patient message.

Description: Currently incoming messages
from patients are distributed to all mem-
bers of an organization, however users
do not have visibility into which mes-
sage already been responded to. This is a
summary of a customer comment: As an
office administrator who receives messages
from patients, there is no indication in
Secure-Mail to let me know if another ad-
ministrator has handled a patient request.
This can lead to issues where a patient
gets multiple replies.

Issue Type: –

Priority: –

Assignee: –

Ticket

Summary: As a staff member I need to
know if my co-worker has responded a re-
ceived patient message.

Description: Currently incoming messages

from patients are distributed to all

members of an organization. However

users do not have visibility into which

message already been responded to. This

is a summary of a customer comment:
As an office administrator who receives
messages from patients, there is no in-
dication in Secure-Mail to let me know
if another administrator has handled a
patient request. This can lead to issues
where a patient gets multiple replies.

Issue Type: Improvement

Priority: Major

Assignee: Carol

Customer CRM agent Chief of CRM Project manager

Summarize the request
Escalate

Define priority and
assignee

Fig. 13 Process in BS showing the conversational structure of a customer request at Bright-
Squid. The underlined sentences have been chosen by our annotators to train machine learning
based summarization techniques.

Managing customer requests with ESSMArT

When Bob’s request is received, Alice elaborates the description further with the
customer, as above. ESSMArT consequently summarizes the conversation as below:

32 Maleknaz Nayebi et al.

Zendesk ticket (summary of the customer request)

John emailed me and wanted a copy of the a message note faxed to him. I sent John
back a note, with the message note attached. He sends me back a thank you. Once I
have deleted my note on Mr. Smith, everyone else on the Yellow Team still has that
email. Unless I specifically tell everyone to delete it or unless the rest of the Yellow
Team goes into the EMR and looks into John’s chart if it’s done, no one has any
way of knowing the task has been dealt with. Is there a way to delete that task from
everyone’s inbox?

ESSMArT then escalates the ticket to Carol, who receives a notification comprising
the ESSMArT summary and escalation recommendation. If Carol agrees, ESSMArT
creates a Jira development ticket by assigning a title using abstractive summarization
(Check Figure 4 for a detailed example), assigning ticket priority, assigning a specific
developer, and notifying Erin.

Jira ticket (development tickets)

Title: Delete everyone task in the EMR inbox

Content: In the EMR system; a doctor had emailed a doctor and want a copy of a
message note faxed to him. Staff member send back a note, with the message attached.
The doctor sends back a thank you. Once doctor delete his note on patient, everyone
else on the team still has that email. Unless the doctor specifically tell everyone to
delete it or unless the rest of the team goes into the EMR and looks into the doctor’s
chart to see if it’s done, no one has any way of knowing the task has been dealt with.
is there a way to delete that task from everyone’s inbox?

Priority: Major

Assignee: Jane Doe

Once Erin agrees, the ESSMArT ticket is added to the Jira backlog. Screenshots
of this example in ESSMArT were previously presented in Figure 9.

ESSMArT Way to Manage customer requests 33

Appendix II - Confusion matrices

In Table 5, Table 7, and Table 8, we presented precision, recall, and F1-score of three
state-of-the art classifiers (Naive Bayes, SVM, and Random Forest) to predict ticket es-
calation, prioritize the escalated tickets, respectively assign them to a developer. These
are the results of ten times of running cross validation and we provided the averages.
In addition to that, we provide the aggregated confusion matrix for the classifiers with
the best performance and for all the three types of prediction. These confusion matrices
are presented below.

Confusion matrix for ticket escalation

Predicted
Yes No

A
ct
ua

l Yes 218 24
No 103 297

The False-Positives demonstrate that the classifier mistakenly considered a ticket is
escalated while in fact it has not been escalated. The False-Negatives indicate the
tickets that should have been escalated but were not detected by the classifier. The
False-positives may add additional effort to the development team while the False-
Negatives may result in customer’s dissatisfaction by not properly addressing their
problem.

Confusion matrix for ticket assignment
*Aggregated across eight different classes

Predicted
Yes No

A
ct
ua

l Yes 210 40
No 26 41

The False-Positives may result in more work for developers as the ticket may be assigned
to a developer with not enough expertise. False-Negatives may result in more time and
effort to fix the ticket as the developer with less expertise would handle the ticket.

Confusion matrix for ticket prioritization
*Aggregated across five different classes

Predicted
Yes No

A
ct
ua

l Yes 133 49
No 44 101

The False-Positives and Negatives would delay fixing some of the important customers’
concerns prioritize lower or stuck behind lower priority tickets.

34 Maleknaz Nayebi et al.

Appendix III - Survey Questions

The user study to evaluate ESSMArT was conducted in two main parts: First, using the
prototype tool of ESSMArT using the data from Brightsquid for evaluation purpose,
and second, asking questions to understand the perception of participants about the
usability of ESSMArT in practice. In this appendix, we present the five questions raised
to understand the perception of users about ESSMArT.
Figure 11 shows the results of this survey and the perception of CRM experts and
project managers. The sample of questions and the screenshots of the used prototype
were presented in Figure 8 respectively Figure 9.

1. How understandable did you find the results of ESSMArT?
5- Very understandable 4- understandable
3- Somewhat understandable but slightly ambiguous
2- Somewhat understandable but mostly ambiguous 1- Not understandable

2. How likely you would use ESSMArT in practice?
5- Definitely 4- Very likely 3- Maybe 2- not likely 1- Definitely not

3. To what extent you trust and rely on the ESSMArT results?
5- Totally trust it 4- Trust it 3- Neutral 2- Not trust it 1- Not trust it at all

4. To what extent are you agree that ESSMArT reduces the time for deciding on a
change request?
5- Strongly agree 4- Agree 3- Neutral 2- Disagree 1- Strongly disagree

5. To what extent are you agree that ESSMArT reduces the time needed for CRM/PM
tasks?
5- Strongly agree 4- Agree 3- Neutral 2- Disagree 1- Strongly disagree

	Introduction
	Context and Motivation: Customer Request Management at Brightsquid
	Related Work
	ESSMArT for Automated customer request Management
	Internal evaluation
	External evaluation
	Discussion
	Limitations and threats to validity
	Conclusions and Future Work

